ANALYSIS OF TURBULENT HEAT TRANSFER DURING
NATURAL CONVECTION

E. V. Kudryavtsev and N. E. Cherepkova UDC 536.253

The cube-root law and the limiting square~root law of heat transfer during natural convection
with developed turbulence are derived analytically.

Heat transfer during natural convection is, as we well know, characterized by self-adjointness with
respect to the governing dimension and is described by the cube-root law. This law has been established
experimentally in [1], with the value of GrPr ~ 10*3 attained on the basis of the governing dimension (dia-
meter of a sphere) equal to 16 m, and it would be interesting to also derive it analytically.

We will consider the heat transfer during natural convection at a flat vertical plate, with the convec-
tive stream sufficiently turbulent. The equation of the steady-state (average) shear stress profile across
the boundary layer is

ot = oW, = oW
& :_p(W== o Wy ay”>+gpﬁ(T—Ta), @

where the terms on the right~hand side represent the inertia forces and the convection (lift) force res-
pectively.

The variation of the turbulent thermal flux across the boundary layer is expressed by the equation

(W, G WG] =0 @

We now define Ty and dy in terms of the following functions
=Tl —0) [ @)= 11—+ au+ an’), (3)
Gy= g1 — ) F@)=qy (1 —u) (by + bu -+ byu?), (4)

with 7, and q, denoting respectively the shear friction and the thermal flux at the surface.
Analogous functions for forced convection were introduced by G. S. Moroz and by Pohlhausen [2].

We next assume that the thermal flux decreases along the normal coordinate exponentially. For this,
we represent the dimensionless argument of the thermal flux function in exponential form, letting

\

. , y
u:l*exp(~x€), (5)

where % is a constant and 6 denotes that part of the boundary-layer thickness which corresponds to a positive
velocity increment (gradient) normal to the surface. Then u will vary from 0 at the surface (y=0)to 1
{y = =), i.e., the selected function is convenient in that its integration limits are from 0 to . According
to the Reynolds analogy, the same assumption will be made for the shear stress profile.
The number of terms in the expansion depends on the boundary conditions:
1. When T=Tyaty=0andu= 0, then (3) and (1) yielday=1
6
2. WhenT=Tyat y= 0andu= 0, then (1) and (5) yield ©)
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3) When Ty=0aty=06andu=u;=1—exp(—n) then (3) yields for the second coefficient (8)

I —ayu,

Ay = —
2 2
Uy

)

In order to determine the polynomial coefficients in (4), we proceed as before:

1. Wheng=qgyaty=0andu= 0, then (4) by = 1; (10)
2. Whenq=qyaty=0andu= 0, then (2), (5), and (4) yield by = 1; (11)
3) When (8%qy/du®)y=g = 0 at y = 0 and u = 0, then by = 1. (12)

The first integral expression in the variable u, for the thermal flux normal to the wall, is
1

d = du
Qo = ax j‘ Cppr (Ty - Ta) 0
0

1-u7 (13)

or in terms of the Nusselt number, after both sides of Eq. (13) have been multiplied by I /A and with x/I
=¢, 6/ =06% a= Mepp,

1

d [ & [ du

V== | — VW (T, - T ——1.

ALY Sl 19
0

Expression (14) is very important: it is essentially the Nusselt relation.

The second integral expression can be obtained from the relation between stress 7 and the tempera-
ture; in terms of variable u we have

1 1 —
8 du oW: 8§ du
T, = T,—T) — e L .
0 gpﬁj‘ T, ] % 1—u SV E % 1—u {13)
90}
In order to determine the temperature profile across the boundary layer, we use the relation
- ar
= Ay
Gy " oy (16)
and find the relation between (Ty—Tg) and Tg—Tg):
1
8 [ F
Ty =T = T, ~T) 2| @ . am)
% by
Inserting for (Ty—Ta) expression (17) into (15), with
1
gd " Fw
—-——T == — duy
T—T,=-2 |
1}
we obtain
gyl (T, —T,
Vo = as)
h F@w
mf )

It follows from the Prandtl—Karman theory that the velocity profile across the boundary layer is most
closely described by a "logarithmic" law, but this would be mathematically very difficult to apply in the
analysis here and, therefore, we used instead the Karman power-law relation

> 1, 1, oy
N Ak a9
For the turbulent viscosity as a function of y we have

l/ Ty

- re < —P

uT=p~,§9— (I/%’ —6—> on'~*, {20)
p

v

where Bp and p are constant numbers.

withn = y/6.
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Assuming, in accordance with (5) that u ® ®(y/0) for small values of u (inasmuch as only a small part
of the boundary layer directly adjacent to the wall surface plays an important role in the heat transfer),
we have 71 = u/% and, letting 6*/% = 6%, we obtain

Ty
. - " &% \—p
}‘L'sz l./P (l/%i) pﬁ*ul-—p____ﬁoul—p_ (21)

pB, v

For the kinematic viscosity we assume a similar relation:

Vg == Vo ul P, (22)

5 b Z_L(l/i_ﬁi = 23)
T op pB, p v

In the turbulent mode the thermal conductivity is related to the dynamic viscosity as follows:

Here, according to (21),

hop = C ol (24)
With (21) we obtain now

0
= i 25
* = DB, o v (25)
or, with (23),
A v,
oo =P =Pre (26)
Now, in terms of (26), formula (17) becomes
1
7. — 1) N wyurtau
Ty —Tog=(T,— a)mpr Wy u , @7)
0
with
. (28)
Nu Y
A transformation of the integral in (2), with Ty = Tgatu=0, yields
1
Nu* = poPr . 29
To(p) (29)
Then
T,—T p p
T, —T,=le—TLe (l—up)+——.(l—uﬂ+1>+——<1-—u”“>] 60
v %m>[ p+1 p+2

(the temperature profile in Fig. 1 has been plotted according to Eq. (30) in (Ty—-Ta)/(Ts—Ta), y/6* co-
ordinates).

Now the velocity component {)—Vx will be expressed in terms of variable u and the other parameters.

According to the definition of shear friction

— oW,
W=l 5y T (1)
but from (23) we have
[ = pyau'~? (32)
or with the aid of (5)
—_ T 6* I
W,=— ‘j””"f(u)dwc (33)
Ve

*P. 1. Kapitsa [4] has suggested the possibility that the quantity W;,l' increases continuously from the
rigid wall surface on.
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Wy Ts Ty
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~ |, Fig. 1. Temperature and velocity
[ N profiles plotted according to formu-
/\\ N ‘ las (30) and (34) respectively: (T
s A\ —T)/(Tg—T,) = f(y/0*) (solid
i AN lines), Wyg/W, (dashed line) with
b AN p=1/7 (1,4), p=1/3 (2,3).
OSSN
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For Wx = 0 at u = 0 there follows C = 0.

As before, we transform the integral in (33)

— up / p )
szw-— 1l—u 1— au i, 34
o5 )( p+2° 84)

with Wy = 6% /pvw (the velocity profile in Fig. 1 has been plotted according to Eq. (34) in WX/WO, y/6*
coordinates).

Inserting now expression (34) for Wx into (14) and using expression (3), we obtain

d [ Wo*T,—T)p
‘I’= oY M Ca)
dE[ pad, (p) j

azu) D (u) du] . (35)

When Tg—T, = const. , then ¥/Tg—T,; = Nu or from (35) and (34)

&
d 0 1 J3(p) ]
Nu=— Pr— =2 , 26
& [ v op I, (p) @8
However,
To g%
———vp—— = Re* 37)
and :
op = 5= (Re"™. 39)
» g
Then formula (36) becomes
d J3(p) }
Nu = -—| Re®***Pr B, 2% |, (39)
dg [ ) ? Jo (p) ’

We will further seek a relation between Re* and Gr*. Rearranging Eq. (15) for 7(, with relation (30)
for Ty—Ta and relation (34) for Wx, we obtain

6 2
g+ L & [\ )
— gop J() Jp)— ax[ <mp) m] (40)
Inserting Re * from (37) and (38) into (40), with Gr* = gBATO*3/»? and 6%/1 = 6, yields
J, d [ B
Re* — Gr* g; 53 _dE_ [ __S_st_’_ Re*2(l+ﬂ) Ja (p)] . (41)

We will now confine our analysis to the approximate solution, disregarding the second term in Eg.
(14), and let
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Gr* = Gr &, (42)

which then yields

: J1(p) 3

Re* = Gr 2L §;.
4o (p) “3)

We now iry to relate the Nusselt number and the Grashof number. According to (29) and (38),
1
u* = Re¥'—)pr, 44
BJ ) 4
but, since - ”

Nt == 0 %0

Nu . : Nu §; (45)

and, according to (43),

J:(p) (46)
hence
[ R
No—=— L Rest—2pr_ _Pr__ [Zﬁ’l] *\GroRer ® . (47)
B,J, (p) 8, By (0) LJo(p) )

On the other hand, for the Nusselt number we have Eq. (39) and will use it for expressing Re* in terms of
the Grashof number and the other parameters. Finally, (39) and (47) yield

—p 1 d
R o = g R&V By o)) (48)
or, considering (46), the differential equation

1-3p

1
d 1 1 [0 1% 5, S5
4 (RextHa) _ ——[4—] GroRe* ® | (49)
dk B3 J3(0) LI ()
Integrating (49) yields (with Re*(1+p) = z and inasmuch as Re* -~ 0 and C = 0 when £ — 0)
1
2460 7T 4 -+
e+ 3 _ 2+6p 21 [Jl(p)]a GriE=A4,Gr°t (50)
3(1+p) Buds(p) Lo (p)
or
3 1 8
Re* — A2p+6ﬂ Gr2+ﬁp §2+6n, 6L
where .
_ 2 4 6p [Jl(p)]?. 52)
P31 +p BN L)
Inserting Re * from (51) into (47) yields
o 13
Nu= A4, PrGri® g2tor (63)
where
’ 1
y T [Jl(m }3 =3
"By Lo 1 (59)

An analysis of formula (53) leads to the following conclusions:

1. If the heat transfer coefficient is to be independent of the linear dimension, then the power expo-
nent of £ must be equated to zero, i.e., 1—3p/2 + 6p = 0 and thus p = 1/3, but then (53) becomes
1

Nu=4,PrGr?. - (55)
Obviously, this formula corresponds to the law of "self-adjointness" with respect to the dimension. In
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other words, developed thermal turbulence prevails when p = 1/3 (while forced turbulence is, according to
Karman, characterized by p = 1/7).

2. In order to satisfy the limiting relation Nu = f(Gr1/2), one must let 1 + p/2(1 + 3p) = 1/2, i.e.,
p = 0 and, consequently, the power exponent of £ becomes equal to 1/2. The Nusselt number then becomes
proportional to the square root of the linear dimension, which is in agreement with the gist of the Frank
—Kamenetskii corollary [3], i.e.,

1 1
Nu= A, PrGr® g%, (56)

3. It is interesting that, with p = 1, formula (53) reduces to the laminar fourth-root law:

1
K3

Nu=APrGrig ?, (57)
where the negative exponent of £ represents the well known decrease in the heat transfer coefficient with
increasing distance from the origin of convective flow.

A further analysis of formula (53) makes it feasible to consider the case of Pr = 1 only, to include
the Prandtl number in the coefficient Ay, with the latter regarded as a function of the Prandtl number
Ap = I(Pr), and to calculate the values of this coefficient according to the formula
! J =%
y . [Jl(p)]s {2+6p I {Jdp)]ﬂ”s" (58)
PT B L) ] 18U +p) Bodyo) L) 4 )

Forp=1/3, 1/7, and 1/10 we have respectively

- _;; = 1674 J, = 1.392; J, =0,131; g= —10.2;

ps_;; J,= 1.658; J,—= 1.190; J,—0.106; g, =—18.1;

k|
p= _1%- J, = 1.524; J, = 1.138; J, = 0.065; @, = —24.2.

’

For eliminating a, we have used the formula

- P ngo(p)}}Hp'
% {1+p+1[TJ1(p> P (59)

Since for an approximate determination of 74 we have used Eq. (41) without the second term, hence
from (7) we obtain

_ Jo (P)
“=i e (60)

Inserting into (58) the found values of J;(p), Jy(p), and J3(p) yields

_1 _20
= 1.452B, °; A_ 1 =198, ®, (61)

10

A ,=0.765B;"; A
P=‘§* p=

-

With Bp = 8.74, to the first approximation according to Karman, we obtain

Ap=3'~ = 0.0876 ~0.1; Ap= =0.697; Ap = 0.696. (62)

- L

10

N

The first approximation Ap=1 /3 ~0.10 obtained on the basis of the coefficient By for forced convection is
sufficiently close to the test value of Ap= /5 = 0.13 based on natural convection. This makes it feasible now,
in turn, to determine Bp on the basis of the test value for Bp according to the cube-root law: Bp = 0.765
/0.13 = 5.88,

It is to be noted that these values indicate a close structural similarity between natural and forced
turbulent flow.

NOTATION

X,y is the longitudinal and nhormal coordinate respectively;
Ty is the tangential component of turbulent friction in a layer at a distance y from the plate surface;
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dy = -—Xt(BT/ay) is the turbulent thermal flux per unit area per unit time, normal to the surface, from a
layer at a distance y from the plate surface;

T is the instantaneous temperature of the fluid;

Tq is the temperature of the fluid at infinity (far from the plate),

Tg is the temperature of the plate;

Ty is the temperature of a layer at a distance y from the plate surface;

p is the density of the fluid;

p is the specific heat of the fluid;

B is the thermal expansivity of the fluid;

ug is the turbulent (average) dynamic viscosity;

M is the turbulent (average) thermal conductivity;

a is the coefficient of heat transfer during natural convection;

V_Vx, Wy are the longitudinal and normal component of turbulent (average) velocity;

[ () = a5+ ayu 4 asu® F (u) = by -+ byu -+ byu®;
P = [(1-u”)+ _I-T(l"”pﬂ)"'—: (l—u"“)J Jo(p) =1+ ;jl_‘T
P oy P gy P ey |9

+ A he = g[(l—u)-l- SE a—we 4 SR ey |2

1
p : _r b
() =0Su2ﬂ(1—u> (- ) s Ja(p)—§ w (1=t

1

Ji(p) =§[1—up)+ ’:—_1—(1_””1)_'———1 (1 — uP¥) i‘-‘u:l*’.

azu) D (u) du.
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*The relation between this function and the I'(p)-function makes it possible to use tables for calculations).
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